Application of an iterative Golub-Kahan algorithm to structural mechanics problems with multi-point constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Golub-Kahan Bidiagonalization and Stopping Criteria

The Golub–Kahan bidiagonalization algorithm has been widely used in solving leastsquares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub–Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes a...

متن کامل

Performance Evaluation of Golub-Kahan-Lanczos Algorithm with Reorthogonalization by Classical Gram-Schmidt Algorithm and OpenMP

The Golub-Kahan-Lanczos algorithm with reorthogonalization (GKLR algorithm) is an algorithm for computing a subset of singular triplets for large-scale sparse matrices. The reorthogonalization tends to become a bottleneck of elapsed time, as the iteration number of the GKLR algorithm increases. In this paper, OpenMP-based parallel implementation of the classical Gram-Schmidt algorithm with reor...

متن کامل

On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems

The symmetric Lanczos method is commonly applied to reduce large-scale symmetric linear discrete ill-posed problems to small ones with a symmetric tridiagonal matrix. We investigate how quickly the nonnegative subdiagonal entries of this matrix decay to zero. Their fast decay to zero suggests that there is little benefit in expressing the solution of the discrete ill-posed problems in terms of ...

متن کامل

Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems

We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...

متن کامل

GCV for Tikhonov regularization via global Golub-Kahan decomposition

Generalized Cross Validation (GCV) is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Modeling and Simulation in Engineering Sciences

سال: 2020

ISSN: 2213-7467

DOI: 10.1186/s40323-020-00181-2